亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久综合久久综合亚洲| 涩涩视频免费网站| 精品黑人一区二区三区久久| 在线一区av| 精品亚洲aⅴ乱码一区二区三区| 国产精品全国免费观看高清| 色综合久久久久综合| 亚洲高清电影| 日韩中文字幕区一区有砖一区 | 欧美三级三级三级爽爽爽| 日韩高清欧美激情| 欧美另类视频| 国产欧美一区二区三区在线看蜜臀| 91官网在线观看| 欧美一区二区免费视频| www.男人的天堂.com| av手机在线观看| 亚洲免费毛片| 欧美日韩久久| 亚洲动漫第一页| 高清欧美精品xxxxx在线看| 日韩av午夜| 欧美区一区二| 7799精品视频| 国产精品对白久久久久粗| 99精品桃花视频在线观看| 91精品国产日韩91久久久久久| 国产福利精品导航| 亚洲人精品午夜| 曰本人一级毛片免费完整视频| 男人天堂久久久| 99精品在免费线中文字幕网站一区 | 缴情综合网五月天| 欧美日韩激情视频一区二区三区| 一级特黄特色的免费大片| 精品国产一区二区亚洲人成毛片| 福利视频一区二区| 亚洲欧洲美洲综合色网| 中文字幕中文字幕在线十八区| 免费不卡在线观看| 国产日韩欧美在线一区| 精品视频在线一区二区| 久久久久欧美精品| 亚洲国产日产av| 国产黄色片在线观看| 波多野结衣乳巨码无在线观看| 欧美日本三级| 久久国产精品一区二区| 欧美日本一区二区高清播放视频| 精品国产鲁一鲁一区二区张丽| 精品国产一区二区三区av性色| 欧美精品自拍偷拍| 天天碰夜夜操| 日韩av高清在线| 亚洲区欧洲区| 精品91福利视频| 99国产精品久久久久久久久久| 欧美在线免费播放| av一二三不卡影片| 欧美一区二区视频在线观看| 在线观看亚洲精品福利片| 成人h精品动漫一区二区三区| 伊人久久大香| 精品免费视频一区二区| 丝袜国产在线| 国产精品中文字幕日韩精品| 99久久精品费精品国产一区二区| 亚洲青青青在线视频| 四虎成人在线视频| 99久久免费精品国产72精品九九 | 国产精品夜夜夜| 成人美女视频在线观看18| 国产精品成人免费| 中文字幕高清20页| 亚洲欧美电影| 欧美日韩一区二区三区四区在线观看| 国产成人精品亚洲日本在线桃色| 超碰在线中文| 欧美伊人影院| 精品久久久久久久久国产字幕| 欧美边添边摸边做边爱免费| 日韩主播视频在线| 91精选福利| 三级不卡在线观看| 在线国产亚洲欧美| 亚洲视频狠狠| 中文日本在线观看| 天天做天天爱综合| 欧洲国产伦久久久久久久| 国产一二区在线观看| 欧美亚洲一区二区三区| 日韩欧美资源站| 欧美三级网页| 欧美日韩国产123区| 91露出在线| 国产综合婷婷| 日本大香伊一区二区三区| 亚洲女同志freevdieo| 久久国产免费看| 视频在线国产| 97久久超碰国产精品| 欧美gv在线| 成人性生交大合| 国产伦理精品| 欧美性猛交xxxx久久久| 夜色av.com| 久久久久久免费视频| 2018av男人天堂| 日韩国产欧美| 国产天堂在线观看| 91女主播在线观看| 国产成人精品免费一区二区| 欧美精选视频一区二区| 欧美亚洲国产一卡| 欧美色女视频| 久久久9色精品国产一区二区三区| 日韩欧美在线视频观看| 欧美成人福利| 亚洲一区二区三区四区五区中文| 日韩在线影院| 亚洲猫色日本管| 一区二区在线影院| 特级毛片在线| 欧美精品777| 欧美91大片| 欧美www.| 无限国产资源| 亚洲图片欧美色图| 亚洲免费资源在线播放| 91麻豆国产在线观看| 成人国产在线观看| 国产色91在线| 黄页网站大全一区二区| 日韩欧美电影| 国产粉嫩在线观看| 日韩欧美区一区二| 久久久久高清精品| 日韩精品亚洲专区在线观看| 春暖花开亚洲| 国产一区二区女| 波多野结衣欧美| 在线观看的网站你懂的| 777午夜精品免费视频| 韩日精品在线| 在线观看黄色av| 欧美激情一区二区三区不卡 | 成人黄色电影网址| 亚洲精品日韩综合观看成人91| 欧美性xxxxxxxxx| 久久99精品国产91久久来源| 亚洲精品国产首次亮相| 色成人综合网| 欧美一区=区三区| 3344国产永久在线观看视频| 好看的中文字幕在线播放| 天堂影院在线| 亚洲美女电影在线| 亚洲成人av电影| 黄色日韩网站视频| 欧美美女黄色| 亚洲人成午夜免电影费观看| 日本h片在线看| 亚洲va欧美va国产va天堂影院| 久久都是精品| 清纯唯美亚洲综合一区| 涩涩涩久久久成人精品| 麻豆av在线| www.一区| 国产超碰精品在线观看| 亚洲成av人片在www色猫咪| 久久精品国产精品亚洲综合| 综合亚洲自拍| 91在线三级| 污片视频在线免费观看| 日本中文字幕视频在线| 在线中文av| 欧美日韩免费在线视频| 在线观看免费成人| 欧美日韩黄色影视| 在线免费观看av影视天堂| 精品伦理精品一区| 四虎国产成人永久精品免费| 欧美sm极限捆绑bd| 欧美日韩一区二区在线| 一区二区中文视频| 国产成人免费在线观看| 日本亚洲天堂网| 久久久夜精品| 黄色亚洲大片免费在线观看| 欧美系列电影免费观看| 亚洲v在线看| 1024精品久久久久久久久| 亚洲视频国产| 亚洲www免费| bestiality新另类大全| 极品白浆推特女神在线观看| 羞羞小视频视频| 精品国产免费视频| 日韩精品一区二区三区中文不卡| 在线免费不卡视频|