亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代做Lab 2: Time Series Prediction with GP

時間:2024-03-21  來源:  作者: 我要糾錯



Evolutionary Computation 2023/2024
Lab 2: Time Series Prediction with GP
Released: February 26, 2024
Deadline: March 18, 2024
Weight: 25 %
You need to implement one program that solves Exercises 1-3 using any programming language.
In Exercise 5, you will run a set of experiments and describe the result using plots and a short
discussion.
(In the following, replace abc123 with your username.) You need to submit one zip file
with the name ec2024-lab2-abc123.zip. The zip file should contain one directory named
ec2024-lab2-abc123 containing the following files:
• the source code for your program
• a Dockerfile (see the appendix for instructions)
• a PDF file for Exercises 4 and 5
In this lab, we will do a simple form of time series prediction. We assume that we are given some
historical data, (e.g. bitcoin prices for each day over a year), and need to predict the next value in
the time series (e.g., tomorrow’s bitcoin value).
1
We formulate the problem as a regression problem. The training data consists of a set of m
input vectors X = (x
(0), . . . , x(m−1)) representing historical data, and a set of m output values
Y = (x
(0), . . . , x(m−1)), where for each 0 ≤ j ≤ m − 1, x
(j) ∈ R
n and y
(j) ∈ R. We will use genetic
programming to evolve a prediction model f : R
n → R, such that f(x
(j)
) ≈ y
(j)
.
Candidate solutions, i.e. programs, will be represented as expressions, where each expression evaluates to a value, which is considered the output of the program. When evaluating an expression,
we assume that we are given a current input vector x = (x0, . . . , xn−1) ∈ R
n. Expressions and evaluations are defined recursively. Any floating number is an expression which evaluates to the value
of the number. If e1, e2, e3, and e4 are expressions which evaluate to v1, v2, v3 and v4 respectively,
then the following are also expressions
• (add e1 e2) is addition which evaluates to v1 + v2, e.g. (add 1 2)≡ 3
• (sub e1 e2) is subtraction which evaluates to v1 − v2, e.g. (sub 2 1)≡ 1
• (mul e1 e2) is multiplication which evaluates to v1v2, e.g. (mul 2 1)≡ 2
• (div e1 e2) is division which evaluates to v1/v2 if v2 ̸= 0 and 0 otherwise, e.g., (div 4 2)≡ 2,
and (div 4 0)≡ 0,
• (pow e1 e2) is power which evaluates to v
v2
1
, e.g., (pow 2 3)≡ 8
• (sqrt e1) is the square root which evaluates to √
v1, e.g.(sqrt 4)≡ 2
• (log e1) is the logarithm base 2 which evaluates to log(v1), e.g. (log 8)≡ 3
• (exp e1) is the exponential function which evaluates to e
v1
, e.g. (exp 2)≡ e
2 ≈ 7.39
• (max e1 e2) is the maximum which evaluates to max(v1, v2), e.g., (max 1 2)≡ 2
• (ifleq e1 e2 e3 e4) is a branching statement which evaluates to v3 if v1 ≤ v2, otherwise the
expression evaluates to v4 e.g. (ifleq 1 2 3 4)≡ 3 and (ifleq 2 1 3 4)≡ 4
• (data e1) is the j-th element xj of the input, where j ≡ |⌊v1⌋| mod n.
• (diff e1 e2) is the difference xk − xℓ where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋| mod n
• (avg e1 e2) is the average 1
|k−ℓ|
Pmax(k,ℓ)−1
t=min(k,ℓ)
xt where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋|
mod n
In all cases where the mathematical value of an expression is undefined or not a real number (e.g.,

−1, 1/0 or (avg 1 1)), the expression should evaluate to 0.
We can build large expressions from the recursive definitions. For example, the expression
(add (mul 2 3) (log 4))
evaluates to
2 · 3 + log(4) = 6 + 2 = 8.
2
To evaluate the fitness of an expression e on a training data (X , Y) of size m, we use the mean
square error
f(e) = 1
m
mX−1
j=0

y
(j) − e(x
(j)
)
2
,
where e(x
(j)
) is the value of the expression e when evaluated on the input vector x
(j)
.
3
Exercise 1. (30 % of the marks)
Implement a routine to parse and evaluate expressions. You can assume that the input describes a
syntactically correct expression. Hint: Make use of a library for parsing s-expressions1
, and ensure
that you evaluate expressions exactly as specified on page 2.
Input arguments:
• -expr an expression
• -n the dimension of the input vector n
• -x the input vector
• -question the question number (always 1 in this case)
Output:
• the value of the expression
Example: In this example, we assume that your program has been compiled to an executable with
the name my lab solution.
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 1 -x "1.0"
-expr "(mul (add 1 2) (log 8))"
9.0
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 2 -x "1.0 2.0"
-expr "(max (data 0) (data 1))"
2.0
Exercise 2. (10 % of the marks) Implement a routine which computes the fitness of an expression
given a training data set.
Input arguments:
• -expr an expression
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing the training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -question the question number (always 2 in this case)
1See e.g. implementations here http://rosettacode.org/wiki/S-Expressions
4
Output:
• The fitness of the expression, given the data.
Exercise 3. (30 % of the marks)
Design a genetic programming algorithm to do time series forecasting. You can use any genetic
operators and selection mechanism you find suitable.
Input arguments:
• -lambda population size
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -time budget the number of seconds to run the algorithm
• -question the question number (always 3 in this case)
Output:
• The fittest expression found within the time budget.
Exercise 4. (10 % of the marks) Here, you should do one of the following exercises.
If you follow LH Evolutionary Computation, do the following exercise: Describe your
algorithm from Exercise 3 in the form of pseudo-code. The pseudo-code should be sufficiently detailed
to allow an exact re-implementation.
If you follow LM Evolutionary Computation (extended), do the following exercise:
Describe in 150 words or less the result in one recent research paper on the topic “symbolic regression
using genetic programming”. The paper needs to be published in 2020 or later in the proceedings of
one of the following conferences: GECCO, PPSN, CEC, or FOGA.
5
Exercise 5. (20 % of the marks)
In this final task, you should try to determine parameter settings for your algorithm which lead to
as fit expressions as possible.
Your algorithm is likely to have several parameters, such as the population size, mutation rates,
selection mechanism, and other mechanisms components, such as diversity mechanisms.
Choose parameters which you think are essential for the behaviour of your algorithm. Run a set of
experiments to determine the impact of these parameters on the solution quality. For each parameter
setting, run 100 repetitions, and plot box plots of the fittest solution found within the time budget.
6
A. Docker Howto
Follow these steps exactly to build, test, save, and submit your Docker image. Please replace abc123
in the text below with your username.
1. Install Docker CE on your machine from the following website:
https://www.docker.com/community-edition
2. Copy the PDF file from Exercises 4 and 5 all required source files, and/or bytecode to an
empty directory named ec2024-lab2-abc123 (where you replace abc123 with your username).
mkdir ec2024 - lab2 - abc123
cd ec2024 - lab2 - abc123 /
cp ../ exercise . pdf .
cp ../ abc123 . py .
3. Create a text file Dockerfile file in the same directory, following the instructions below.
# Do not change the following line . It specifies the base image which
# will be downloaded when you build your image .
FROM pklehre / ec2024 - lab2
# Add all the files you need for your submission into the Docker image ,
# e . g . source code , Java bytecode , etc . In this example , we assume your
# program is the Python code in the file abc123 . py . For simplicity , we
# copy the file to the / bin directory in the Docker image . You can add
# multiple files if needed .
ADD abc123 . py / bin
# Install all the software required to run your code . The Docker image
# is derived from the Debian Linux distribution . You therefore need to
# use the apt - get package manager to install software . You can install
# e . g . java , python , ghc or whatever you need . You can also
# compile your code if needed .
# Note that Java and Python are already installed in the base image .
# RUN apt - get update
# RUN apt - get -y install python - numpy
# The final line specifies your username and how to start your program .
# Replace abc123 with your real username and python / bin / abc123 . py
# with what is required to start your program .
CMD [" - username " , " abc123 " , " - submission " , " python / bin / abc123 . py "]
7
4. Build the Docker image as shown below. The base image pklehre/ec2024-lab2 will be
downloaded from Docker Hub
docker build . -t ec2024 - lab2 - abc123
5. Run the docker image to test that your program starts. A battery of test cases will be executed
to check your solution.
docker run ec2024 - lab2 - abc123
6. Once you are happy with your solution, compress the directory containing the Dockerfile as
a zip-file. The directory should contain the source code, the Dockerfile, and the PDF file
for Exercise 4 and 5. The name of the zip-file should be ec2024-lab2-abc123.zip (again,
replace the abc123 with your username).
Following the example above, the directory structure contained in the zip file should be as
follows:
ec2024-lab2-abc123/exercise.pdf
ec2024-lab2-abc123/abc123.py
ec2024-lab2-abc123/Dockerfile
Submissions which do not adhere to this directory structure will be rejected!
7. Submit the zip file ec2024-lab2-abc123.zip on Canvas.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫CSIE3310、代做c++/Python編程
  • 下一篇:AIST1110代做、Python編程設計代寫
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美成人福利| 青春草在线视频| 久草在线新免费首页资源站| 成人在线视频观看| 国产探花在线精品| 日韩亚洲国产欧美| wwwwww.欧美系列| 精品久久香蕉国产线看观看亚洲 | 欧美日韩中国免费专区在线看| 日韩午夜三级在线| 国产高清视频在线| 日本欧美一区| 91成人精品视频| www..com久久爱| 日本高清不卡在线观看| 传媒在线观看| 精品亚洲美女网站| 欧美一区二区| 久久亚洲一区二区三区明星换脸| 欧美日韩国产丝袜另类| 国产主播色在线| 欧美gay囗交囗交| 在线观看免费一区二区| 91蜜桃免费观看视频| 欧美日韩国产美| 天堂аⅴ在线地址8| ady日本映画久久精品一区二区| 一本色道精品久久一区二区三区| 国产精品久久久久久久午夜片| 欧美一区二区视频免费观看| 四虎影视成人| 欧美激情偷拍自拍| 91小视频在线免费看| 欧美一区二区三区在线看| av影片在线看| 神马久久一区二区三区| hitomi一区二区三区精品| 67194成人在线观看| 精精国产xxxx视频在线| 精品视频免费| 久久精品一区二区三区不卡 | av在线电影观看| 国产传媒欧美日韩成人精品大片| 成人av影院在线| 日韩精品中文字幕在线不卡尤物| 国产ktv在线视频| 伊人久久大香线蕉av超碰演员| 亚洲人一二三区| 中文字幕在线观看第一页| 日本成人精品| 国产精品123区| 91精品在线免费| 中文日产幕无线码一区二区| 99视频一区| 日韩欧美极品在线观看| 99在线播放| 激情久久一区| 欧美日韩国产丝袜另类| 青春草视频在线观看| 欧美福利网址| 大荫蒂欧美视频另类xxxx | 黄色精品一二区| 6080午夜不卡| 成人影院网站ww555久久精品| 国产最新精品精品你懂的| 欧美成人性福生活免费看| 少妇精品视频一区二区免费看| 麻豆精品一区二区三区| 日韩精品资源二区在线| 成人自拍视频| 91蜜桃网址入口| 日本在线丨区| 久久久久久美女精品| 亚欧色一区w666天堂| 久操av在线| 精品综合久久久久久8888| 在线影音av| 免费观看成人www动漫视频| 久久精品网站免费观看| 国外av在线| 影音先锋国产精品| 在线观看91精品国产麻豆| 国产精品亚洲欧美日韩一区在线| 国产精品一二一区| 视频免费观看| 911精品美国片911久久久| 欧美视频在线视频| 日本.亚洲电影| jlzzjlzz国产精品久久| 男人久久精品| 怡红院精品视频在线观看极品| 欧美日韩国产成人在线免费| 欧美视频二区欧美影视| 中文字幕色av一区二区三区| 日本一本在线免费福利| 韩国欧美国产1区| 亚洲天堂2017| 亚洲精品1234| 在线视频xx| 91成人免费| 国产69精品久久久久9999人| 亚洲欧美日韩高清在线| 国产乱码精品一区二区三| 1024日韩| 国产成人免费精品| 免费观看成人www动漫视频| 欧美激情黄色片| 国产麻豆日韩欧美久久| 久久精品欧美日韩| 91日韩在线专区| 国产精品色哟哟| 欧美日韩激情一区| 欧美日韩一区二区免费视频| 久久九九久久九九| 国产欧美日韩麻豆91| 一本综合久久| 久久精品观看| 亚洲国产激情| 久久国产亚洲| 欧美破处大片在线视频| av一区二区高清| 欧洲av不卡| 国产成+人+综合+亚洲欧美| 偷拍自拍一区| 六月天综合网| 美女尤物国产一区| 日本一区二区免费高清| 欧美理伦片在线播放| 欧美激情偷拍| 成人影院中文字幕| 国产精品原创| 香蕉成人影院| 国产精品成人国产| 亚洲色图88| 91麻豆国产精品久久| 日韩一区二区三区四区| 91探花在线观看| 国内视频精品| 精品国产91乱高清在线观看| 最猛黑人系列在线播放| hd国产人妖ts另类视频| 国产亚洲第一伦理第一区| 国产精品久久久久久久久久辛辛 | 精品资源在线| 波多野结衣一区| 91精品国产66| 亚洲国产福利| 深夜视频一区二区| 香蕉成人app| 六月丁香综合| 亚洲男人天堂一区| 小小水蜜桃在线观看| 天天噜天天色| 97视频精彩视频在线观看| 99久久久国产| 亚洲激情成人| 欧美黄污视频| 日本不卡高清| 激情五月激情综合网| 亚洲人精品一区| 最近免费看av| 福利一区和二区| 成人网页在线观看| 97影院理论午夜| 精品国产午夜| 亚洲午夜精品一区二区三区他趣| 精品影院一区| 欧美一区二区| 色av成人天堂桃色av| 韩国中文字幕在线| 欧美18xxxx| www.亚洲在线| 亚洲伦在线观看| 国产aa视频| 中文字幕在线视频网站| 日韩精品免费一区二区三区| 粉嫩久久99精品久久久久久夜 | 日本91福利区| 久久看人人爽人人| 极品粉嫩饱满一线天在线| 第一区第二区在线| 国产成人av在线影院| 欧美艳星brazzers| 日色在线视频| 91久久夜色精品国产按摩| 亚洲码国产岛国毛片在线| 999在线视频| 中文字幕中文字幕在线十八区| 狠狠一区二区三区| 国产成人午夜片在线观看高清观看| 欧美日韩小视频| 黄色网址在线免费| 国产欧美日韩在线观看视频| 中文在线资源观看网站视频免费不卡| 在线播放中文一区| 国产一区2区在线观看| 2023国产一二三区日本精品2022| 青春草在线免费视频| 国产精品丝袜久久久久久app| 日韩av电影资源网|