亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

CISC3025代寫、代做c++,Java程序設計

時間:2024-04-03  來源:  作者: 我要糾錯



University of Macau
CISC3025 - Natural Language Processing
Project#3, 2023/2024
(Due date: 18th April)
Person Name ('Named Entity') Recognition
This is a group project with two students at most. You need to enroll in a group here. In this project,
you will be building a maximum entropy model (MEM) for identifying person names in newswire
texts (Label=PERSON or Label=O). We have provided all of the machinery for training and testing
your MEM, but we have left the feature set woefully inadequate. Your job is to modify the code
for generating features so that it produces a much more sensible, complete, and higher-performing
set of features.
NOTE: In this project, we expect you to design a web application for demonstrating your final
model. You need to design a web page that provides at least such a simple function: 1) User inputs
sentence; 2) Output the named entity recognition results. Of course, more functionalities in your
web application are highly encouraged. For example, you can integrate the previous project’s work,
i.e., text classification, into your project (It would be very cool!).
You NEED to submit:
• Runnable program
o You need to implement a Named Entity Recognition model based on the given starter
codes
• Model file
o Once you have finished the designing of your features and made it functions well, it
will dump a model file (‘model.pkl’) automatically. We will use it to evaluate
your model.
• Web application
o You also need to develop a web application (freestyle, no restriction on programming
languages) to demonstrate your NER model or even more NLP functions.
o Obviously, you need to learn how to call your python project when building the web
application.
• Report
o You should finish a report to introduce your work on this project. Your report should
contain the following content:
§ Introduction;
§ Description of the methods, implementation, and additional consideration to
optimize your model;
§ Evaluations and discussions about your findings;
2
§ Conclusion and future work suggestions.
• Presentation
o You need to give a 8-minute presentation in the class to introduce your work followed
by a 3-minute Q&A section. The content of the presentation may refer to the report.
Starter Code
In the starter code, we have provided you with three simple starter features, but you should be able
to improve substantially on them. We recommend experimenting with orthographic information,
gazetteers, and the surrounding words, and we also encourage you to think beyond these
suggestions.
The file you will be modifying is MEM.py
Adding Features to the Code
You will create the features for the word at the given position, with the given previous label. You
may condition on any word in the sequence (and its relative position), not just the current word
because they are all observed. You may not condition on any labels other than the previous one.
You need to give a unique name for each feature. The system will use this unique name in training
to set the weight for that feature. At the testing time, the system will use the name of this feature
and its weight to make a classification decision.
Types of features to include
Your features should not just be the words themselves. The features can represent any property of
the word, context, or additional knowledge.
For example, the case of a word is a good predictor for a person's name, so you might want to add
a feature to capture whether a given word was lowercase, Titlecase, CamelCase, ALLCAP, etc.
def features(self, words, previous_label, position):
 features = {}
 """ Baseline Features """
 current_word = words[position]
 features['has_(%s)' % current_word] = 1
 features['prev_label'] = previous_label
 if current_word[0].isupper():
 features['Titlecase'] = 1
 #===== TODO: Add your features here =======#
 #...
 #=============== TODO: Done ================#
 return features
3
Imagine you saw the word “Jenny”. In addition to the feature for the word itself (as above), you
could add a feature to indicate it was in Title case, like:
You might encounter an unknown word in the test set, but if you know it begins with a capital letter
then this might be evidence that helps with the correct prediction.
Choosing the correct features is an important part of natural language processing. It is as much art
as science: some trial and error is inevitable, but you should see your accuracy increasing as you
add new types of features.
The name of a feature is not different from an ID number. You can use assign any name for a
feature as long as it is unique. For example, you can use “case=Title” instead of “Titlecase”.
Running the Program
We have provided you with a training set and a development set. We will be running your programs
on an unseen test set, so you should try to make your features as general as possible. Your goal
should be to increase F1 on the dev set, which is the harmonic mean of the precision and the recall.
You can use three different command flags (‘-t’, ‘-d’, ‘-s’) to train, test, and show respectively.
These flags can be used independently or jointly. If you run the program as it is, you should see the
following training process:
Afterward, it can print out your score on the dev set.
You can also give it an additional flag, -s, and have it show verbose sample results. The first column
is the word, the last two columns are your program's prediction of the word’s probability to be
$ python run.py -d
Testing classifier...
f_score = 0.8715
accuracy = 0.9641
recall = 0.7143
precision = 0.9642
if current_word[0].isupper():
features['Titlecase'] = 1
$ cd NER
$ python run.py -t
Training classifier...
 ==> Training (5 iterations)
 Iteration Log-Likelihood Accuracy
 ---------------------------------------
 1 -0.69315 0.055
 2 -0.09383 0.946
 3 -0.08134 0.968
 4 -0.07136 0.969
 Final -0.06330 0.969
4
PERSON or O. The star ‘*’ indicates the gold result. This should help you do error analysis and
properly target your features.
Where to make your changes?
1. Function ‘features()’ in MEM.py
2. You can modify the “Customization” part in run.py in order to debug more efficiently and
properly. It should be noted that your final submitted model should be trained under at least 20
iterations.
3. You may need to add a function “predict_sentence( )” in class MEM( ) to output predictions
and integrate with your web applications.
Changes beyond these, if you choose to make any, should be done with caution.
Grading
The assignment will be graded based on your codes, reports, and most importantly final
presentation.
$ python run.py -s
 Words P(PERSON) P(O)
----------------------------------------
 EU 0.0544 *0.9456
 rejects 0.0286 *0.9714
 German 0.0544 *0.9456
 call 0.0286 *0.9714
 to 0.0284 *0.9716
 boycott 0.0286 *0.9714
 British 0.0544 *0.9456
 lamb 0.0286 *0.9714
 . 0.0281 *0.9719
 Peter *0.4059 0.5941
 Blackburn *0.5057 0.4943
 BRUSSELS 0.4977 *0.5023
 1996-08-22 0.0286 *0.9714
 The 0.0544 *0.9456
 European 0.0544 *0.9456
 Commission 0.0544 *0.9456
 said 0.0258 *0.9742
 on 0.0283 *0.9717
 Thursday 0.0544 *0.9456
 it 0.0286 *0.9714
#====== Customization ======
BETA = 0.5
MAX_ITER = 5 # max training iteration
BOUND = (0, 20) # the desired position bound of samples
#==========================
5
Tips
• Start early! This project may take longer than the previous assignments if you are aiming for
the perfect score.
• Generalize your features. For example, if you're adding the above "case=Title" feature, think
about whether there is any pattern that is not captured by the feature. Would the "case=Title"
feature capture "O'Gorman"?
• When you add a new feature, think about whether it would have a positive or negative weight
for PERSON and O tags (these are the only tags for this assignment).

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:COMP3334代做、代寫Python程序語言
  • 下一篇:代寫CSC 330、代做C/C++編程語言
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    成人久久久久| 日韩精品久久久久久久电影99爱| 西野翔中文久久精品字幕| 欧美gvvideo网站| 久久精品99国产精品| 欧美极品另类videosde| 91成人免费在线视频| 国产女呦网站| 日本动漫同人动漫在线观看| 精品91福利视频| 国产综合自拍| 激情综合五月天| 亚洲精品视频一区二区| 日韩欧美国产综合一区| 风间由美一区| 国产91在线精品| 欧美精品综合| 久久久久成人黄色影片| 欧美日韩国产一区二区三区地区| 日本精品专区| 91麻豆精品| 久久都是精品| 亚洲欧美日韩电影| 狠狠干夜夜操| 韩国理伦片久久电影网| 99热免费精品| 伊人婷婷欧美激情| 玖玖在线免费视频| 精品亚洲a∨| 免费在线播放第一区高清av| 中文字幕在线观看不卡视频| 国产视频资源| www欧美在线观看| 日韩成人精品在线| 精品美女久久久久久免费| 欧洲毛片在线| 免费看久久久| 成人综合激情网| 在线播放亚洲一区| 九九色在线视频| 亚洲国产精品第一区二区三区| 中文字幕一区二区三区在线不卡 | 9191成人精品久久| 1区2区在线观看| 天天久久综合| 亚洲欧美区自拍先锋| 九九在线视频| 最近国产精品视频| 91在线观看污| 老司机色在线视频| 婷婷综合电影| 91色.com| 香蕉视频在线网站| 亚洲另类春色校园小说| 欧美激情综合在线| 三级av在线播放| 国产精品自拍区| 中文字幕一区二区三区蜜月| 免费毛片在线| 亚洲啊v在线观看| 亚洲综合在线观看视频| 色综合久久影院| 欧美一区在线看| 懂色aⅴ精品一区二区三区蜜月| av大片在线| 国产午夜精品一区二区三区欧美| 色婷婷综合久久久久中文一区二区 | 国产精品美女久久久久久不卡 | 麻豆视频在线看| 奇米一区二区三区| 精品久久久久久综合日本欧美| 9999精品| 久久久久久久久久久久久女国产乱| 在线国产一区二区三区| 欧美a级片视频| 欧美日韩亚洲91| 国模套图日韩精品一区二区| 国产麻豆一精品一av一免费| 黄色一级影院| 精品久久久久久久| 激情懂色av一区av二区av| 国产精品69xx| 国产精品一区二区黑丝| 美丽的小蜜桃4春潮| 欧美日韩在线网站| 91豆麻精品91久久久久久| 四虎国产精品成人免费影视| 久久午夜色播影院免费高清| h视频在线免费| 久色成人在线| 又黄又www的网站| 欧美日韩第一区| 欧美精品vⅰdeose4hd| 国产劲爆久久| 五月综合激情网| 国产国产一区| 日韩一区欧美一区| 亚洲精品永久免费视频| aaa国产一区| 国产欧美久久久久久久久| 久久www免费人成看片高清| 在线欧美成人| 老司机精品导航| 蜜桃tv在线播放| 国产亚洲精品久久久久婷婷瑜伽| 天天摸天天做天天爽水多| 国产精品传媒精东影业在线 | 国产精品美女久久久久高潮| 俺来也官网欧美久久精品| 97久久人人超碰| 丰乳肥臀在线| 日本一区二区三区高清不卡| xxxxxx欧美| 亚洲码国产岛国毛片在线| 成人1区2区| 亚洲成av人片观看| 老司机aⅴ在线精品导航| 在线观看亚洲精品视频| 国产欧美日韩精品一区二区三区| 欧美日韩成人综合天天影院| 国产麻豆精品久久| 免费的av网址| 亚洲欧洲一级| 在线观看国产高清视频| 精品一区二区影视| 羞羞污视频在线观看| 国产清纯白嫩初高生在线观看91 | 在线免费观看欧美| 美女被人操视频在线观看| 日产欧产美韩系列久久99| 老司机精品视频在线观看6| 久久嫩草精品久久久精品一| 欧美精品高清| 欧美午夜精品久久久久久久| 国产精品亚洲人成在99www| 色视频网站在线观看| 久久亚洲国产精品一区二区| av电影在线观看| 久久奇米777| 国产精品一级在线观看| 欧美日韩精品电影| 尤物精品在线| 尤物在线视频| 国产精品伦一区二区三级视频| 亚洲精品大全| 91麻豆精品91久久久久同性| 国产亚洲网站| 青草视频在线免费直播| 亚洲另类在线一区| 国产剧情在线观看一区| 免费观看v片在线观看| proumb性欧美在线观看| 日韩精品一页| 天天做夜夜操| 高清视频一区二区| 午夜不卡一区| 精品国产免费视频| 国产精品18久久久久久vr| 在线观看涩涩| 欧美日韩美女一区二区| 日韩精品一二三区| 国产精品一区二区av影院萌芽| 色8久久精品久久久久久蜜| 一区二区日韩免费看| 国产理论电影在线| 欧美性xxxx18| 一本色道精品久久一区二区三区| 四虎影视成人| 欧美性xxxx18| 日本伊人午夜精品| 成人免费网站www网站高清| 日韩视频免费观看高清在线视频| 蜜臀av一区二区在线观看| 日本成人福利| xxxx69视频| 国产亚洲制服色| 欧美高清视频在线观看mv| 黄色网在线播放| 欧美日韩一区二区三区在线免费观看 | 美女被久久久| 全球最大av网站久久| 色偷偷亚洲第一综合| 91蜜桃视频在线| 日韩精品免费一区二区三区| 久久77777| 欧美日韩aaaaa| 大胆亚洲人体视频| 国产永久精品大片wwwapp| 日韩伦理在线观看| 欧美吞精做爰啪啪高潮| 国产一区亚洲一区| 人人香蕉久久| 韩国中文字幕在线| 欧美一卡二卡三卡四卡| 93久久精品日日躁夜夜躁欧美 | 另类的小说在线视频另类成人小视频在线| 日本欧美在线| 免费人成在线观看网站| 欧美在线不卡视频| 99久久精品情趣|