亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲国产精华液| 91精品国产乱码久久蜜臀| 欧美日韩国产一区二区| 5858s免费视频成人| 黄页免费在线观看| 韩国成人二区| 一本久久青青| 日本va欧美va欧美va精品| 91热门视频在线观看| 午夜精品久久久久久久久| 国产免费视频| 男女视频在线| 国产成人一区| 国产在线视频精品一区| 一区二区三区中文字幕精品精品| 精品国产自在久精品国产| 久久综合之合合综合久久| 国产精品视频首页| 在线视频日韩| 亚洲视频一二三区| 免费xxxxx网站中文字幕| 麻豆mv在线观看| 国产精品毛片久久| 国产成人精品免费一区二区| 色婷婷香蕉在线一区二区| 毛片在线播放网址| 风间由美性色一区二区三区四区| 久久精品91| 亚洲国产精品视频| 日本韩国一区| 欧美人成在线观看ccc36| 日韩精品成人一区二区在线| 亚洲国产另类av| 日本亚洲一区| 日韩理论电影中文字幕| 国产精品77777竹菊影视小说| 91黄色免费观看| 日本免费视频在线观看| 久久av中文| 成人免费高清在线观看| 91精品国产美女浴室洗澡无遮挡| 2021中文字幕在线| 伊人精品视频| 午夜欧美一区二区三区在线播放| 男人av在线| 激情综合网五月| 中文字幕精品一区| 四虎影院在线域名免费观看| 欧美绝顶高潮抽搐喷水合集| 丁香婷婷深情五月亚洲| 伊人av在线com| 中文字幕综合| 成人午夜精品一区二区三区| www.99色.com| 永久91嫩草亚洲精品人人| 国产天堂亚洲国产碰碰| 影音先锋在线影院| 老司机aⅴ在线精品导航| 91性感美女视频| 免费黄色av电影| 一区二区三区无毛| 国产iv一区二区三区| 黑粗硬长欧美在线视频免费的| **欧美日韩在线| 99re这里只有精品视频首页| 黄色三级高清在线播放| 日韩成人午夜| 亚洲丝袜制服诱惑| 麻豆电影在线播放| 久久精品三级| 欧美变态tickling挠脚心| 秋霞影院一区| 国产精品无圣光一区二区| 国产精品天堂| 国产精品九九| 欧美群妇大交群的观看方式| 三上悠亚一区二区| 成人综合在线视频| 男女网站在线观看| 激情一区二区| 欧美一区在线视频| 91在线一区| 中文字幕日韩av资源站| 免费黄网站在线播放| 欧美亚洲一区二区三区| 精品国产髙清在线看国产毛片 | 欧美亚洲三级| 精品国产乱码91久久久久久网站| 亚洲自拍都市欧美小说| 午夜精品免费在线观看| 四虎影视4hu4虎成人| 久久久一区二区三区| 超碰免费在线| 久久一区二区三区超碰国产精品| 日本xxxxwwww| 欧美激情1区2区3区| 欧美一区二区不卡视频| 精品精品精品| 欧美日韩一区二区在线| 国外成人福利视频| 国产精品免费久久久久| jizzjizz中国精品麻豆| heyzo一本久久综合| 国产丝袜在线| 不卡一区二区在线| 成人在线网址| 99久久久无码国产精品| 蜜桃视频网站在线观看| 国产精品 日产精品 欧美精品| 国产日本在线视频| 久久99国产精品久久99果冻传媒| 最近中文字幕在线中文视频| 老司机午夜精品视频| 最近中文视频在线| 久久精品久久久精品美女| 毛片网站在线观看| 国产精品一区在线| h片在线免费| 国产性色一区二区| 日韩经典一区| 午夜欧美在线一二页| 奇米影视777在线欧美电影观看| 欧美在线|欧美| 日韩久久视频| 成年人视频在线| 久久午夜电影| 国产乱色在线观看| 久久精品人人做人人爽人人| 欧美黑人巨大xxxxx| 亚洲国产日韩一区二区| 四虎884aa成人精品最新| 欧美一区二区久久久| 激情综合久久| 国产在线小视频| 99视频精品在线| 成人午夜亚洲| 欧美色图天堂网| 亚洲高清av| 日日夜夜精品一区| 国产精品二三区| 欧美电影免费网站| 99re热在线观看| 久久电影网电视剧免费观看| 久草在线视频网站| 亚洲午夜视频在线观看| 精品久久综合| 在线免费观看av网站| 波多野结衣中文字幕一区 | 欧美日韩一区二区三区四区在线观看| 国产天堂在线观看| 国产成人av电影在线观看| 成人国产在线| 欧美色图在线观看| 久久欧美肥婆一二区| 91网址在线观看| 偷偷要91色婷婷| 欧美激情视频一区二区三区免费| 国产精品免费播放| 亚洲视频一区二区在线观看| 国产成人精品一区二区免费看京| 日韩三级精品| 欧美精品第一区| 97cao在线| 丁香婷婷深情五月亚洲| 欧美一区=区三区| 91精品福利在线一区二区三区| 日韩精品乱码免费| 久久女人天堂| 久久av国产紧身裤| 黄页在线观看| 国产成人免费视频一区| 91精品国产66| 天天操天天舔| 成人avav在线| 久久这里只有精品一区二区| 一级特黄视频| 国产精品久久毛片a| 日韩欧美三级| 午夜影院免费在线| 色综合天天做天天爱| 视频一区中文字幕国产| 欧美一区=区三区| 午夜电影福利| 亚洲丝袜自拍清纯另类| 欧美日韩亚洲一区二区三区在线| 亚洲区欧洲区| 欧美一级搡bbbb搡bbbb| av欧美精品.com| 欧美一区二区三区高清视频| 麻豆传媒视频在线| 欧美日本一区二区在线观看| 懂色av一区二区在线播放| 亚欧洲精品视频在线观看| 免费理论片在线观看播放老| 亚洲一区av在线| 日韩av一级电影| av成人综合| www.视频在线.com| 欧美精品久久天天躁| 91久色porny|