亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代做MATH1033、代寫c/c++,Java程序語言

時間:2024-05-11  來源:  作者: 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2023-2024
MATH1033 - STATISTICS
Your neat, clearly-legible solutions should be submitted electronically via the MATH1033 Moodle page by
18:00 on Wednesday 8th May 2024. Since this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct). Submissions made more than one week
after the deadline date will receive a mark of zero. Please try to make your submission by the deadline.
General points about the coursework
1. Please use R Markdown to produce your report.
2. An R Markdown template file to get you started is available to download from Moodle. Do make use of
this, besides reading carefully the Hints and Tips section below.
3. Please submit your report a self-contained html file (i.e. as produced by R Markdown) or pdf.
4. If you have any queries about the coursework, please ask me by email (of course, please limit this to
requests for clarification; don’t ask for any of the solution nor post any of your own).
Your task
The data file scottishData.csv contains a sample of the ”Indicator” data that were used to compute the 2020
Scottish Index of Multiple Deprivation (SIMD), a tool used by government bodies to support policy-making. If
you are interested, you can see the SIMD and find out more about it here: https://simd.scot
Once you have downloaded the csv file, and once you’ve set the RStudio working directory to wherever you
put the file, you can load the data with dat <- read.csv(”scottishData.csv”) The file contains data for a sample
of 400 ”data zones” within Scotland. Data zones are small geographical areas in Scotland, of which there
are 6,976 in total, with each typically containing a population of between 500 and 1000 people. Of the 400
observations within the data file, 100 are from the Glasgow City, 100 are from City of Edinburgh, and 200
are from elsewhere in Scotland. Glasgow and Edinburgh are the two largest cities in Scotland by population.
Table 1 shows a description of the different variables within the data set.
Your report should have the following section headings: Summary, Introduction, Methods, Results, Conclusions.
For detailed guidance, read carefully section page 4 of the notes, and the ”How will the report be marked?”
section below.
The Results section of your report should include subsections per points 1-3 as follows. The bullet points
indicate what should be included within these subsections, along with suitable brief commentary.
MATH1033 Turn Over
2 MATH1010
1. A comparison of employment rate between Glasgow and Edinburgh.
• A single plot with side-by-side boxplots for the Employment_rate variable for each of
Glasgow and Edinburgh.
• A histogram of the Employment_rate variable with accompanying normal QQ plot, for
each of Glasgow and Edinburgh.
• Sample means and variances of the Employment_rate variable for the data zones in
each of Glasgow and Edinburgh.
• Test of whether there is a difference in variability of Employment_rate scores between
Glasgow and Edinburgh.
• Test of whether there is a difference in means of Employment_rate scores between
Glasgow and Edinburgh.
2. Investigation into how Employment_rate and other variables are associated.
• A matrix of pairwise scatterplots for the following variables: Employment_rate,
Attainment, Attendance, ALCOHOL, and Broadband. Also present pairwise correlation
coefficients between these variables.
• A regression of Employment_rate on Attendance, including a scatterplot showing a line
of best fit.
3. A further investigation into a respect of your choosing.
• It’s up to you what you choose here. Possible things you could consider are: considering
an analysis similar to 1 above, but involving the data on data zones outside of Glasgow
and Edinburgh; considering whether what you find in investigations in 2 above are
similar if you consider whether the data zones are from Glasgow, Edinburgh or elsewhere;
investigating the other variables in the data set besides these in 1 and 2.
• Note that some variables will be very strongly correlated, but with fairly obvious/boring
explanation: for example “rate” variables (see Table 1) are just “count” variables
divided by population size, and data zones are designed to have similar population
sizes.
• Think freely and creatively about what is interesting to investigate, especially how you
could make good use of the methods that you are learning in the module.
Please include as an appendix the R code to produce the results in your report, but don’t include
R code or unformatted text/numerical output in the main part of the report itself.
Hints and tips:
1. Use the template .Rmd file provided on Moodle as your starting point.
2. Read carefully “How will the report be marked?” below. Then re-read it again once again
just before you submit to make sure you have everything in place.
3. You may find the subset command useful. Some examples:
• glasgow <- subset(dat, Council_area == "Glasgow City") defines a new variable containing
data only for Glasgow.
• subset(dat, (Council_area != "City of Edinburgh" & Council_area != "Glasgow City"))
finds the data zones that are not in either Edinburgh or Glasgow.
4. The command names(dat) will tell you the names of the variables (columns) in dat.
5. dat(,c(16,17,18)) will pick out just the 16th, 17th, 18th column (for example).
MATH1010
[ ]
m
( ]
⑧m
3 MATH1010
6. The pairs() function produces a matrix of pairwise scatterplots. cor() computes pairwise
correlation coefficients.
7. Do make sure that figures have clear titles, axis labels, etc
MATH1010 Turn Over
.
4 MATH1010
How will the report be marked?
The marking criteria and approximate mark allocation are as follows:
Summary [4 marks] - have you explained (in non-technical language) (a) the aim of the analysis;
(b) (very briefly) the methods you have used; and (c) the key findings?
Introduction [5] - have you (a) explained the context, talked in a bit more detail about the aim;
(b) given some relevant background information; (c) described the available data; (d) explained
why the study is useful/important?
Methods [3] - have you described the statistical techniques you have used (in at least enough
detail that a fellow statistician can understand what you have done)?
Results [14, of which 7 are for the investigation of your choosing mentioned in point 3 above] -
have you presented suitable graphical/numerical summaries, tests and results, and interspersed
these with text giving explanation?
Conclusions [4] - have you (a) recapped your key findings, (b) discussed any limitations, and
(c) suggested possible further extensions of the work?
Presentation [10] - overall, does the report flow nicely, is the writing clear, and is the presentation
tidy (figures/tables well labelled and captioned)? Has Markdown been used well?
MATH1010
5 MATH1010
Table 1: A description of the different variables. “Standardised ratio” is such that a value of 100
is the Scotland average for a population with the same age and sex profile.
MATH1010 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



















 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:COMP2017代寫、代做Python/Java程序
  • 下一篇:CMT219代寫、代做Java程序語言
  • 代做CSCI 2525、c/c++,Java程序語言代寫
  • COMP 315代寫、Java程序語言代做
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    国产极品一区| 99久久国产综合精品麻豆| 五月天一区二区| 亚洲午夜精品久久久久久app| 高清电影在线免费观看| 日韩欧美一区在线| 国产精品私人影院| 免费成人在线影院| 成人羞羞网站| 欧美黄页免费| 在线播放蜜桃麻豆| 在线一区观看| 欧美一级欧美三级在线观看| 亚洲免费大片在线观看| 国产呦萝稀缺另类资源| 国产电影一区二区在线观看| 亚洲人体在线| av男人的天堂在线观看| 国产污视频在线| 精品国产乱码久久久久久久| 精品免费在线视频| 国产精品电影一区二区三区| 国产一区二区在线免费观看| 91免费版在线| 国产一区二区伦理| 日韩电影在线看| 亚洲成人国产| 欧美日韩国产免费观看视频| 麻豆一区二区| 992tv国产精品成人影院| 最新超碰在线| 黄色毛片在线看| 中文字幕在线资源| 美女的尿口免费视频| 欧美成人bangbros| 欧美一区二区视频在线观看2020| 欧美性xxxx极品高清hd直播| 亚洲成人精品一区| 亚洲欧美一区二区三区孕妇| 欧美丝袜丝交足nylons| 亚洲国产成人av网| 亚洲二区视频在线| 欧美成人一区二区三区| 天堂资源在线中文| 午夜视频在线观看网站| 欧美成人aaa| 欧美一区久久| 女主播福利一区| 国产成人精品免费| 成人福利视频网站| 99久久99精品久久久久久| 亚洲成a人在线观看| 精品va天堂亚洲国产| yiren22亚洲综合伊人22| 国产女主播在线写真| 巨胸喷奶水www久久久| 欧美a级在线| 久久亚洲综合色一区二区三区| 91亚洲精品乱码久久久久久蜜桃| 色综合久久综合| 欧美精品1区2区| 精品对白一区国产伦| 日韩精品黄色| 成年人在线网站| 欧美一区二区三| 91视频91自| 97在线资源在| 最新四虎影在线在永久观看www| jizz内谢中国亚洲jizz| 亚洲日本在线观看视频| 欧洲精品99毛片免费高清观看 | 日韩av影院| 国产伦精品一区二区三区免费优势| 一区二区三区视频播放| 精品久久美女| 亚洲一区日本| 丁香另类激情小说| 亚洲人成网站在线| 天堂在线视频| 波多野结衣在线一区二区| 91精品99| 精品在线一区二区| 国产精品狼人久久影院观看方式| 日韩一级免费观看| gogo亚洲高清大胆美女人体| 国产伦精品一区二区三区在线播放| 精品亚洲porn| 欧美v日韩v国产v| 国产精品黄色片| 美国毛片一区二区三区| 国产精品乱码人人做人人爱| 国产无遮挡在线视频免费观看| 秋霞成人影院| 偷偷www综合久久久久久久| 亚洲日本韩国一区| 91精品国产美女浴室洗澡无遮挡| 黄视频网站在线观看| 日韩av影院| 中文一区一区三区高中清不卡| 最新天堂资源在线资源| 97精品国产| 欧美视频中文在线看| 草美女在线观看| 国产成人久久| 日日摸夜夜添夜夜添精品视频 | av官网在线播放| 国产综合色产| 91网站在线播放| a视频在线看| 日本精品网站| 99视频精品在线| 亚洲日本一区二区三区在线观看| 樱桃视频成人在线观看| 蜜臀av国产精品久久久久| free亚洲| 日韩国产综合| 欧美亚洲丝袜传媒另类| 成人高清网站| 久久久久国产精品午夜一区| 亚洲欧美日韩一区二区三区在线观看| 69av在线| 久久久久久久久久久久久久久久久久久久| 久久婷婷久久一区二区三区| 日韩免费一区二区三区在线播放| 欧美日韩中出| 亚洲欧美在线视频| 天堂在线观看一卡二卡三卡四卡| 欧亚一区二区| 国产午夜亚洲精品羞羞网站| 日韩亚洲欧美在线观看| 少妇久久久久| 欧美色播在线播放| 99综合久久| 国产成人aaa| 国产女主播在线直播| 奇米亚洲午夜久久精品| 伊人国产在线| 欧美资源在线| 欧美亚洲国产一区在线观看网站| 日本一区二区三区视频在线看| 亚洲人成网站在线| 日韩大陆av| 亚洲成av人影院| 9l视频自拍蝌蚪9l视频成人 | 亚洲人www| 性感美女极品91精品| 国产情侣一区二区三区| 亚洲精品水蜜桃| 日本三级视频在线播放| 国产麻豆午夜三级精品| 麻豆tv入口在线看| 国内精品福利| 免费看av大片| 久久福利一区| www日韩tube| 91在线国产福利| 亚洲成a人片| 性欧美疯狂xxxxbbbb| 久久这里只有精品一区二区| 欧美三级中文字幕| 综合国产精品| 在线观看av网站永久| 国产一区二区三区免费观看| 免费av不卡在线观看| 最新不卡av在线| 91精品尤物| 欧美变态口味重另类| 国产精品综合| 免费在线观看黄色网| 欧美国产综合一区二区| 在线免费看av| 久久久久久久久伊人| 97久久精品一区二区三区的观看方式| 日韩欧美精品网址| 国产精品久久占久久| 在线观看国产视频| 91首页免费视频| 国产精品视频一区二区三区| 欧美日韩激情在线| 欧美大片网址| av电影免费| 久久久精品久久久久久96| 情趣网站在线观看| 久久色.com| 欧美巨大xxxx| 最新二区三区av| 91麻豆精品视频| 视频亚洲一区二区| 又黄又爽又色视频| 亚洲综合婷婷| 国产私拍精品| 亚洲欧美激情小说另类| 欧美成人精品一区二区三区在线看| 精品久久久久久国产91| 91高清一区| 污影院在线观看| 欧美图区在线视频| 久久国产精品99久久人人澡| 永久免费在线观看视频| 亚洲精品乱码久久久久久|