亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品三区视频| 精品一区av| 精品91在线| 国产农村妇女毛片精品久久麻豆| 色狠狠一区二区三区香蕉| 精品推荐蜜桃传媒| 国产亚洲高清一区| 久久国产婷婷国产香蕉| 黑人极品videos精品欧美裸| 国产乱视频在线观看| 欧美jizz19性欧美| 国产风韵犹存在线视精品| 欧美三级视频在线观看| av片在线观看免费| 1024精品久久久久久久久| 欧美国产乱子伦| 午夜激情影院| 黄色美女久久久| 成人av资源在线观看| 精品国产乱码久久久久久牛牛 | 久久99视频| 91视频精品在这里| 日韩加勒比系列| 风间由美一区二区av101| 丁香亚洲综合激情啪啪综合| 精品国产精品网麻豆系列| 日韩免费在线电影| 国产成人精品一区二区三区四区| 欧美一区二区黄色| 日韩在线你懂得| 风间由美性色一区二区三区 | 韩国三级在线观看久| 国产精品密蕾丝视频下载| 欧美国产日韩a欧美在线观看 | 美女网站在线观看| 亚洲精华一区二区三区| 国产精品免费视频网站| 青春有你2免费观看完整版在线播放高清 | 中文字幕av资源一区| 深夜福利在线视频| 小说区亚洲自拍另类图片专区 | 麻豆一区二区| 中文字幕在线一区免费| 大地资源中文在线观看免费版| 亚洲情侣在线| 欧美色窝79yyyycom| 巨胸喷奶水www久久久免费动漫| 国产精品一区二区久久不卡| 成人黄色网页| 成人精品影院| 欧美色道久久88综合亚洲精品| 中日韩脚交footjobhd| 精久久久久久久久久久| 日本一二三区视频免费高清| 国产一区二区精品福利地址| 午夜精品久久久久久不卡8050 | 亚洲高清免费观看高清完整版在线观看| av播放在线观看| 久久久久久久波多野高潮日日| 欧洲免费av| 亚洲影院天堂中文av色| 亚洲一区二区三区四区在线| 黄色漫画在线免费看| 国产电影精品久久禁18| 免费av在线电影| 久久亚洲欧洲| 特黄国产免费播放| 黄色综合网站| 久草香蕉在线| 欧美xxx在线观看| 日韩欧美一区中文| 欧美日韩一区二区综合| 在线视频国内一区二区| 91综合久久爱com| 亚洲国产精品一区二区www| 日韩不卡视频在线观看| 中文字幕不卡三区| 亚洲承认视频| 亚洲男人电影天堂| 国产一区高清| 亚洲最大色网站| 亚洲欧美综合久久久久久v动漫| 中文字幕免费观看一区| 日韩精品极品| 国产午夜精品一区二区三区四区| 丁香花高清在线观看完整版| 久久综合成人精品亚洲另类欧美| 在线观看的网站你懂的| 久久综合色天天久久综合图片| 里番在线播放| 国产精品水嫩水嫩| 看片一区二区| 粉嫩av一区二区三区免费野| 欧美日韩导航| 日韩欧美区一区二| 伊人久久亚洲热| а√天堂www在线а√天堂视频| 在线看片日韩| 男人的天堂在线视频| 久久99精品久久只有精品| 日本免费在线视频| 久久久久久免费| 国产精品久久久久77777丨| 亚洲综合一二区| 午夜精品在线| 91精品国产综合久久精品性色| 欧美国产先锋| 免费在线毛片| 91小视频在线观看| 精品国模一区二区三区| 香港成人在线视频| 波多野结衣的一区二区三区 | 先锋影音av在线资源| 99在线精品免费视频九九视 | 99精品综合| 中文在线一二区| a级高清视频欧美日韩| 在线成人视屏 | 大伊人狠狠躁夜夜躁av一区| 国产精品美女久久久久久不卡| 久草亚洲一区| 风间由美性色一区二区三区 | 成人一区而且| 婷婷丁香六月天| zzijzzij亚洲日本少妇熟睡| 欧美日韩视频免费看| 欧美日韩一区二区不卡| 欧美一区综合| 日韩三级影院| 依依成人精品视频| 99久久久久| 色综合久久久久综合一本到桃花网| 欧美国产日本韩| 亚洲视频分类| 最新在线观看av| 91日韩一区二区三区| 性欧美video另类hd尤物| 日韩三级精品电影久久久| 久久99精品一区二区三区三区| 都市激情亚洲综合| 欧美精品日韩精品| 精品亚洲国产成人av制服丝袜| 亚洲伦乱视频| 色先锋av资源| av激情亚洲男人天堂| 极品国产人妖chinesets亚洲人妖 激情亚洲另类图片区小说区 | 国产日产欧产精品推荐色| 日本成人中文| 欧洲成人av| 亚洲一区二区三区中文字幕| 欧美激情第二页| 国产传媒在线| 日韩免费高清av| 成人爽a毛片一区二区免费| 日韩最新av| 黄动漫视频高清在线| 国产精品美女视频| 香蕉视频官网在线观看日本一区二区| 婷婷免费在线视频| 91久久线看在观草草青青| 国产精品一级| 国产综合色激情| 国产免费福利| 成人免费在线播放视频| 亚洲五月婷婷| 成人国产精品一区二区免费麻豆| 欧美xxxx18| 亚洲欧洲一区二区在线播放| 中文字幕一区二区三区乱码图片| 欧洲性视频在线播放| 日韩欧美国产午夜精品| 99精品欧美一区| 在线观看日韩| 日韩制服诱惑| 午夜视频免费在线观看| 亚洲一区在线观看免费观看电影高清| 国产亚洲精品bv在线观看| 国外成人福利视频| 小水嫩精品福利视频导航| 亚洲va韩国va欧美va| 美女mm1313爽爽久久久蜜臀| 国产 日韩 欧美 综合 一区| 一本到av在线| 欧美性xxxxhd| 不卡一区二区在线| 亚洲综合激情在线| 久久精品97| 中文字幕在线看| 日韩欧美主播在线| 成人av网站免费观看| 97色伦图片97综合影院| 韩国成人漫画| 四虎精品在永久在线观看| 欧美三级电影一区| 久久先锋影音av| 一区二区三区四区五区在线 | 99re热视频这里只精品| 国产一区二区精品福利地址| 欧美14一18处毛片| 日日噜噜噜夜夜爽爽狠狠视频|