亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

CSCI 2033代做、代寫Python, C++/Java編程

時間:2024-03-02  來源:  作者: 我要糾錯



CSCI 2033 sections 001 and 010: Elementary Computational Linear Algebra (2024 Spring)
Assignment 1
Due 11:59pm, February 27, 2024 on Gradescope. A 25% penalty will be applied for submissions
that are up to 24 hours late, and a 50% penalty for submissions up to 48 hours late. Any later
submission will not be graded and will get zero automatically.
Notation Scalars are small letters (e.g., a, b, λ, α, β), vectors are boldface small letters (e.g., v, w),
and matrices are boldface capital letters (e.g., A, B). Vectors by default are column vectors; they
are matrices with single columns. Row vectors are matrices with single rows.
Instruction
• This homework set totals 20 points (final grade percentage will be either 8% or 17% depending
on the other homework scores);
• We assume that you know basic concepts in a high-level programming language such as
Python, C++, Java, Matlab, Julia—this is a prerequisite for this course. But we are using Python
throughout this course, because it is the No. 1 language used in modern scientific computing
and industrial applications, especially in areas related to modern artificial intelligence, data
science, machine/deep learning, computer vision, AR/VR where most modern applications
and job positions gravitate. Please find resources to pick up Python yourself; there are tons of
options online, for example https://www.pythonlikeyoumeanit.com/index.html.
• Problems 0–2 are designed to familiarize you with NumPy1—the de-facto standard for scientific computing in Python. Problems 3–4 are about applications using NumPy functions.
• We assume that you are using the Google Colab environment (https://colab.research.
google.com/), which provides a convenient and free Jupyter notebook environment ready for
computing. Please watch this video tutorial https://youtu.be/oCngVVBSsmA or search and
watch tons of similar video tutorials to get started. If you are advanced and comfortable with
local installation and running of Jupyter Notebook or JupyterLab (https://jupyter.org/),
feel free to do so. But we will not provide support for these and you will need to resolve your
own installation and running issues.
• Please show all your work in the 4 Colab files (.ipynb) we release with this homework.
Do not modify any provided code and only write your code in regions marked "YOUR
CODE STARTS HERE". In your final submission, submit the 4 files separately for their
corresponding problems in Gradescope.
Problem 0 NumPy Tutorial
You will need to work through the Prob0_Numpy_Tutorial file to master the minimal background
necessary to proceed. We will point you to additional tutorial materials as we move on; they are
mostly linked from the clickable words and phrases that are in blue.
The problems in this homework are closely related to the textbook of this course — Linear
Algebra: Step by Step by Kuldeep Singh, 2013. In the following problems, we will simply call it the
textbook.
1
https://numpy.org/
1
Problem 1 Vector Operations (5 points)
Create 3 random vectors u, v, w ∈ R
10000 as follows:
1 import numpy as np
2 rng = np . random . default_rng (20232033) # fix a random seed . Please do not modify it
3 u = rng . random ((10000 ,1) ) # generate random vector u
4 v = rng . random ((10000 ,1) ) # generate random vector v
5 w = rng . random ((10000 ,1) ) # generate random vector w
we will use these vectors for all the following questions in Problem 1.
1.1 (1.5/5) Vector indexing and concatenation (textbook section 1.3) Please obtain the following
element or subvectors; we have provided some examples in the Prob0_Numpy_Tutorial file:
(a) The 2023rd element of vector u. NOTE: Python/NumPy indexing starts from 0 instead of 1;
(b) The 2023rd to 2033rd elements of vector v (including the 2023rd and 2033rd elements). NOTE:
Python/NumPy indexing will not include the last element in indexing. Make sure that the
size of the subvector you obtain is 11. You may want to use the built-in numpy.ndarray.shape
to help you check the size of your subvector;
(c) Make a new vector by combining the first 30 elements of v and the last 100 elements of w.
You need to use the Numpy built-in function numpy.concatenate.
Note: If want to learn more about this, you can go to this NumPy tutorial.
1.2 (1/5) Linear combinations (textbook section 1.3) Calculate the following linear combinations:
u + v + w, 2u + 3v + 3w.
1.3 (1.5/5) Inner products (textbook section 1.3) Calculate the following inner products using
the built-in function numpy.inner:
⟨u,u⟩, ⟨u − 2v, w⟩, ⟨3u, 2v + w⟩.
1.4 (1/5) Vector norms (textbook section 2.1) Calculate the following vector norms using the
NumPy built-in function numpy.linalg.norm:
∥u∥ , ∥v + 3w∥ .
Problem 2. Matrix Operations (5 points)
Reminder about our notation and convention: Scalars are small letters (e.g., a, b, λ, α, β), vectors
are boldface small letters (e.g., v, w), and matrices are boldface capital letters (e.g., A, B). Vectors
by default are column vectors; they are matrices with single columns. Row vectors are matrices
with single rows.
2
We start by generating a few random matrices and vectors:
1 import numpy as np
2 rng = np . random . default_rng (20232033) # fix a random seed . Please do not modify it
3 A = rng . random ((100 ,100) ) # generate random matrix A
4 B = rng . random ((100 ,200) ) # generate random matrix B
5 C = rng . random ((100 ,200) ) # generate random matrix C
6 D = rng . random ((100 ,100) ) # generate random matrix D
7 u = rng . random ((100 ,1) ) # generate random vector u
8 v = rng . random ((200 ,1) ) # generate random vector v
We will use these matrices and vectors for all the following questions in Problem 2. We also
provided some examples in Prob0_Numpy_Tutorial file.
2.1 (0.5/5) Matrix norms (textbook section 2.1 & section 1.6) The magnitude of a matrix can be
measured similarly to that of vectors. For any matrix M ∈ R
m×n
, its (Frobenius) norm is defined as
∥M∥F =
q
⟨M,M⟩, (1)
where F is for Frobenius (a famous German mathematician). Call the NumPy built-in function
numpy.linalg.norm, and calculate the following
(a) ∥A∥F
,
(b) ∥B − C∥F
. This is the distance between B and C.
2.2 (0.5/5) Matrix indexing (Discussion Session) Please obtain these submatrices:
(a) The top-left 50-by-50 submatrix of A;
(b) The bottom-right 30-by-25 submatrix of B.
Note: If want to learn more about this, you can go to this NumPy tutorial.
2.3 (0.5/5) Matrix-vector multiplication (textbook section 1.4) Calculate the following matrixvector multiplication using the built-in function numpy.matmul (for matrix multiplication) and
numpy.transpose (for matrix transpose). NOTE: The @ operator can be used as a shorthand for
NumPy.matmul on ndarrays; M.T can be used as a shorthand for NumPy.transpose of matrix M:
Au, C
⊺u, Bv.
2.4 (0.5/5) Matrix-matrix multiplication (textbook section 1.4 & section 1.6) Calculate the
following matrix-matrix multiplication using the built-in function numpy.matmul (for matrix
multiplication) and numpy.transpose (for matrix transpose). NOTE: The @ operator can be used as
a shorthand for NumPy.matmul on ndarrays; M.T can be used as a shorthand for NumPy.transpose
of matrix M:
AB, BC⊺
, C
⊺B, uv⊺
.
3
2.5 (1.5/5) Matrix power (textbook section 1.5) For any square matrix M ∈ R
n×n
, its p-th power
is defined naturally as
Mp = |MMM{z
...M}
p times
. (2)
We have two identities for matrix power parallel to those for scalar power:
(Mp
)(Mq
) = Mp+q
, (Mp
)
q = Mpq
. (3)
Follow the following steps to numerically verify the two identities:
(a) Implement your own matrix power function mat_pow(): it should take any square matrix
M and the integer power p ≥ 0, and output the values of the matrix Mp
. NOTE: To debug,
you are encouraged to test your implementation against the Numpy built-in matrix power
function numpy.linalg.matrix_power. But, this is not required in your submission.
(b) Use your own mat_pow() function to calculate (A6
)(A8
) and A6+8, and also calculate the
relative distance (see definition below) between (A6
)(A8
) and A6+8 — the relative distance
should be very close to 0;
(c) Using your own mat_pow() function to calculate (A6
)
8 and A6∗8
, and also calculate the relative
distance between (A6
)
8 and A6∗8 — the relative distance should be very close to 0.
Definition: relative distance of matrices M and N of the same size equals ∥M−N∥F
∥M∥F
.
2.6 (1.5/5) Inverse and transpose of matrices (textbook section 1.6) Complete the following
calculations using the NumPy built-in function numpy.linalg.inv (for matrix inverse):
(a) (AD)
−1 and D−1A−1
, and the relative distance between them—the relative distance should
be very close to 0;
(b) (A−1
)
⊺ and (A⊺
)
−1
, and the relative distance between them—the relative distance should be
very close to 0;
(c) (AB)
⊺ and B⊺A⊺
, and the relative distance between them—the relative distance should be
very close to 0.
Problem 3. Gaussian Elimination and Back Substitution (5 points)
In this problem, we will implement Gaussian elimination and back substitution. In the end, we will
solve a large linear system Ax = b using our implementation. The Gaussian elimination algorithm
is largely based on Section 1.2 of the textbook; we make small necessary changes to ensure that it works
reliably on computers. Check the Colab file Prob3_Gaussian_Elimination_n_Back_Substitution
for code template.
4
3.0 (0/5) Preparation Gaussian elimination involves three types of row operations:
(a) Multiply a row by a non-zero factor. For example, multiplying λ (λ ̸= 0) on the i-row to
produce the new i-th row can be written as
1 M [[ i ] ,:] = lamb * M [[ i ] ,:]
(b) Subtract a multiple of a top row from a bottom row. For example, subtracting λ times the
i-th row from the j-th row of M, where i < j, to produce the new j-th row, can be written as
1 M [[ j ] ,:] = M [[ j ] ,:] - lamb * M [[ i ] ,:]
(c) Exchanging rows. For example, exchanging the i-th and j-th row of the matrix M can be
written as
1 M [[ i , j ] ,:] = M [[ j , i ] ,:]
3.1 (1.5/5) Gaussian elimination (Version 0) (textbook section 1.2) Implement Gaussian elimiAlgorithm 1 Gaussian Elimination Version 0
Input: A, b
1: U = concatenate(A, b) ▷ generate the augmented matrix U by concatenating A and b
2: n = number of rows in U ▷ n is the number of rows of U
3: for k = 0 : (n − 1) do ▷ k will iterate from 0 to (n − 2) (included) with increment 1
4: for j = (k + 1) : n do ▷ iteratively eliminate the rows below using the current row
5: λ = U[j, k]/U[k, k] ▷ U[k, k] is the current leading number
6: U[[j], :] = U[[j], :] − λ ∗ U[[k], :] ▷ subtract λ multiple of the k-th row from the j-th row
7: end for
8: end for
9: return U ▷ return the final augmented matrix
nation following the pseudocode in Algorithm 1. Your function should be called gauss_elim_v0
that: (i) takes an square matrix A ∈ R
n×n
, a vector b ∈ R
n
, and a print flag print_flag that
controls whether we print the intermediate augmented matrix after each row operation, and (ii)
returns a matrix U ∈ R
n×(n+1) where the left n×n submatrix of U is in the row echelon form. Hint:
Suppose that two matrices M and N have the same number of rows. To concatenate them in the
horizontal direction, we can call the built-in function numpy.concatenate:
1 P = np . concatenate (( M , N ) , axis =1)
To test your implementation, let us take a test case
 (4)
Your Gaussian elimination should produce the following sequence of intermediate augmented
matrices in the right order (Note: the elements marked red are the leading numbers that we are
currently using to eliminate non-zeros below them):



1 −1 1 1
2 −1 3 4
2 0 3 5



R1=R1−2R0
−−−−−−−−→



1 −1 1 1
0 1 1 2
2 0 3 5



R2=R2−2R0
−−−−−−−−→



1 −1 1 1
0 1 1 2
0 2 1 3



5
R2=R2−2R1
−−−−−−−−→



1 −1 1 1
0 1 1 2
0 0 −1 −1


 (5)
To get full credit, you need to print out the intermediate augmented matrix after each row
operation.
3.2 (2/5) Back substitution (textbook section 1.2) We first implement back substitution, and
then combine Gaussian elimination and back substitution into a linear system solver for cases where
A is square. Finally, we test our linear solver against the Numpy built-in.
Algorithm 2 Backward Substitution
Input: U ▷ U is the output matrix from Gaussian elimination
1: n = number of rows in U ▷ n is the number of rows of U
2: x = 0 ▷ initialize x as an all-zero vector
3: c = U[:, [−1]] ▷ c: the last column of the augmented matrix, i.e., updated b
4: D = U[:, : −1] ▷ D: the rest part of the augmented matrix, i.e., updated A
5: x[n − 1] = c[n − 1]/D[n − 1, n − 1] ▷ obtain xn−1 first
6: for i = n − 2 : −1 : −1 do ▷ i will iterate from n − 2 to 0 (included) with increment −1
7: x[i] = n
c[i] −
Pn−1
j=i+1 D[i, j]x[j]
o
/D[i, i] ▷ x[i] is the newly solved variable
8: end for
9: return x
(a) Implement back substitution following the pseudocode in Algorithm 2. Your function should
be called back_subs that: (i) takes an augmented matrix U ∈ R
n×(n+1) in the row echelon
form, and a print flag print_flag that controls whether we print the newly solved variable
value after each substitution step, and (ii) returns an x ∈ R
n as a solution to Ax = b. As a
test, take our previous final augmented matrix in Eq. (5), back substitution should give us
R2 : x2 = (−1)/(−1) = 1
R1 : x1 = (2 − 1 ∗ 1)/1 = 1 (6)
R0 : x0 = (1 − (−1) ∗ 1 − 1 ∗ 1)/1 = 1
as we move from bottom to top, row by row. To get full credit, you need to print out the
intermediate newly solved variable after each substitution step (i.e., x2, x1, and x0 in our
test).
(b) Implement a function my_solver_v0 by combining the gauss_elim_v0 and back_subs functions implemented above: this function takes a square matrix A ∈ R
n×n and a vector b ∈ R
n
,
and returns a vector x ∈ R
n
so that Ax = b. In other words, my_solver_v0 solves the linear
system Ax = b when given A and b. To test your solver, in the code template, we provide a
randomly generated A ∈ R300×300 and b ∈ R
300. Please
(i) solve the given 300 × 300 linear system using your solver—we will denote this solution
by x1;
(ii) validate your solution x1 by calculating the relative error ∥Ax1 − b∥ / ∥A∥F
, which
should be very close to 0 if your solver works well;
6
(iii) call the NumPy built-in function numpy.linalg.solve to solve the given linear system to
give a solution x2. Ideally, x1 and x2 should be the same. Please calculate the relative
distance between x1 and x2, i.e., ∥x1 − x2∥ / ∥x2∥. The relative distance should be very
close to 0 if your solver works well.
Congratulations! Now you have a simple solver for large linear systems!
3.3 (1.5/5) Gaussian elimination (Version 1) (textbook section 1.2) Gaussian elimination Version
0 works for “typical" augmented U’s, but can fail for certain U’s. Consider
U =



0 1 1 −1
2 6 4 6
1 2 3 6


 .
We cannot use the red 0 to eliminate 2 and 1 below it by row subtractions only. To make progress,
we need another row operation: row exchange. Obviously, if we exchange row 0 with row 1 or row
2, the top left element becomes non-zero and then we can make progress in elimination. Between
the 2 possibilities, we take the row with the largest element in magnitude, i.e., row 1 to be exchanged
with row 0. For subsequent elimination steps, we do similar things if we encounter elimination
difficulties due to 0’s.
The above modification sounds straightforward. However, we need another consideration when
working on actual computers: when we calculate in float precision, it is hard to tell zero from
non-zero (try 1 − 1/2023 ∗ 2023 in Python or Numpy, do you get exact 0?). This means that it
might be tricky to decide when to perform a row exchange. This also suggests an always-exchange
strategy that works the best in practice: we always exchange the current row with the row below
(including itself) with the largest element in magnitude, no matter if the current element is close
to 0 or not. Let us work through an example to understand this.

So we arrive at Gaussian elimination Version 1 described in Algorithm 3. Compared to Algorithm 1,
we only need two extra lines, marked in orange!
To implement Algorithm 3, you will need to use the following two Numpy built-in functions:
(a) numpy.absolute takes element-wise absolute value of a given vector or matrix: vector (matrix)
in, vector (matrix) out
1 u = np . array ([[1] ,[ -1] ,[2] ,[ -2]])
2 v = np .abs( u ) # short hand version for np. absolute (u)
3 # v now is [[1] ,[1] ,[2] ,[2]]
7
Algorithm 3 Gaussian Elimination Version 1
Input: A, b
1: U = concatenate(A, b) ▷ generate the augmented matrix U by concatenating A and b
2: n = number of rows in U ▷ n is the number of rows of U
3: for k = 0 : (n − 1) do ▷ k will iterate from 0 to (n − 2) (included) with increment 1
4: Find the first i so that abs{U[i, k]} is largest among abs{U[k, k]}, abs{U[k + 1, k]}, · · ·
5: ▷ here abs{} means absolute value
6: U[[k], :] ↔ U[[i], :] ▷ exchange the two rows to get the largest number (in abs{}) on top
7: for j = (k + 1) : n do ▷ iteratively eliminate the rows below using the current row
8: λ = U[j, k]/U[k, k] ▷ U[k, k] is the current leading number
9: U[[j], :] = U[[j], :] − λ ∗ U[[k], :] ▷ subtract λ multiple of the k-th row from the j-th row
10: end for
11: end for
12: return U ▷ return the final augmented matrix
(b) numpy.argmax returns the index (not value) of the maximum value of an input vector (when
ties occur, it returns the first one)
1 u = np . array ([[1] ,[ -1] ,[2] ,[ -2]])
2 idx = np . argmax ( u )
3 # idx is 2
Now we are ready to go!
(a) Implement Algorithm 3. Your function should be called gauss_elim_v1 that: (i) takes an
square matrix A ∈ R
n×n
, a vector b ∈ R
n
, and a print flag print_flag that controls whether
we print the intermediate augmented matrix after each row operation, and (ii) returns a
matrix U ∈ R
n×(n+1) where the left n × n submatrix of U is in the row echelon form. To test
and debug your implementation, please take the worked example in Eq. (7). To get full credit,
you need to print out the intermediate augmented matrix after each row operation.
(b) Implement a function my_solver_v1 by combining the gauss_elim_v1 and back_subs functions implemented above: this function takes a square matrix A ∈ R
n×n and a vector b ∈ R
n
,
and returns a vector x ∈ R
n
so that Ax = b. In other words, my_solver_v1 solves the linear
system Ax = b when given A and b. To test your solver, in the code template, we provide a
randomly generated A ∈ R
300×300 and b ∈ R
300. Please
(i) solve the given 300 × 300 linear system using your solver—we will denote this solution
by x1;
(ii) validate your solution x1 by calculating the relative error ∥Ax1 − b∥ / ∥A∥F
, which
should be very close to 0 if your solver works well;
(iii) call the NumPy built-in function numpy.linalg.solve to solve the given linear system to
give a solution x2. Ideally, x1 and x2 should be the same. Please calculate the relative
distance between x1 and x2, i.e., ∥x1 − x2∥ / ∥x2∥. The relative distance should be very
close to 0 if your solver works well.
Congratulations! Now you have a mature solver for large linear systems!
8
Problem 4. Nearest Neighbor Classification (5 points)
The MNIST (Mixed National Institute of Standards) dataset2
comprises tens of thousands of images
of handwritten digits, i.e., from 0 to 9; check out Fig. 1 for a few examples. Each of the images is a
28×28 matrix. For convenience, we “flatten” each of these matrices into a length-784 (28×28 = 784)
row vector by stacking the rows.
Figure 1: 25 images of handwritten digits from the MNIST dataset. Each image is of size 28 × 28, and can
be represented by a length-784 vector.
Classification here means assigning a label from {0, 1, · · · , 9} to each given image/row vector,
where hopefully the assigned label is the true digit contained in the image. This is easy for human
eyes, but took several decades for computer scientists to develop reliable methods. Today, these
technologies (which can also classify letters, symbols, and so on), collectively known as optical
character recognition (OCR), are hidden in every corner of our digital lives; for interested minds,
please check out this Wikipedia article https://en.wikipedia.org/wiki/Optical_character_
recognition.
In this problem, we explore and implement the k-nearest neighbor (KNN) method for digit
recognition on the MNIST dataset. The method goes like this: we have a dictionary (called training
set) with numerous pairs of (image, label), where the label from {0, 1, · · · , 9} is the true digit
contained in each image. For each given image that we want to predict its label (called a test),
we search the dictionary for the k most similar images (i.e., k-nearest neighbors) and assign the
majority of the labels of those k images to the current test image (i.e., majority voting). To assess the
performance, on a bunch of test images (called test set), we can compare the majority-voting labels
with the true labels. A visual illustration of the k-nearest neighbor (KNN) method is shown in
Fig. 2. We strongly suggest you read this blog article before attempting the following questions.
2Available from http://yann.lecun.com/exdb/mnist/.
9
Figure 2: A visual illustration of the KNN algorithm. Image credit: https://medium.com/swlh/
k-nearest-neighbor-ca2593d7a3c4.
In the Colab file, we provide the training set Xtrain (a Ntrain × 784 NumPy array) and the test
set Xtest (a Ntest × 784 NumPy array). Each row of Xtrain and Xtest is a flattened image. Their
corresponding true labels are ytrain (Ntrain × 1 NumPy array) and ytest (Ntest × 1 NumPy array). In
this problem, Ntrain = 600 and Ntest = 100.
4.1 (1/5) Data visualization Visualize the first and third images (row vectors) in Xtrain, and the
last 5 images (row vectors) in Xtest. What are their corresponding true labels? (Note: this problem
can be solved in one line by calling the provided function visualization(). )
4.2 (1.5/5) Distance calculation Calculate
(1) the distance between v1 and w; (2) the distance between v2 and w,
where v1, v2, w are provided in the Colab file. Compare the two distance values, and explain the
physical meaning of distance in this problem.
4.3 (2.5/5) KNN implementation Algorithm 4 is the pseudocode of the k-nearest neighbor
method. Implement the algorithm and assess performance using the validation code provided;
the validation code compares ypredict and ytest and calculates the prediction accuracy (Note: the
prediction accuracy should be more than 80%). Please use k = 7 in this problem.
To implement Algorithm 4, you will need to use the following two Numpy built-in functions:
(a) numpy.argsort takes in a column vector, and sorts the elements into ascending order, and
returns the corresponding element indices (i.e., sorted indices) as a column vector. For
10

(8)
1 u = np . array ([[1] ,[ -1] ,[2] ,[ -2]])
2 v = np . argsort (u , axis =0)
3 # v now is [[3] ,[1] ,[0] ,[2]] , a column vector (i.e. , 2 -D array with a single
column )
4 v = v . flatten () # This turns the 2 -D array into a 1 -D array
5 # v now is [3 ,1 ,0 ,2]
(b) numpy.bincount takes in a 1-D array with non-negative integer values, finds the largest
integer Nmax, and counts the occurrences of each integer between 0 and Nmax (both ends
included) inside the array. It returns the occurrence counts as a 1-D array of size Nmax + 1. For
example, for an input [0, 1, 1, 3, 2, 1, 7], this function generates the output [1, 3, 1, 1, 0, 0, 0, 1]
because there are one 0, three 1’s, one 2, one 3, zero 4, zero 5, zero 6, and one 7, inside the
input array.
1 u = np . array ([0 , 1 , 1 , 3 , 2 , 1 , 7])
2 v = np . bincount ( u )
3 # v now is [1 , 3 , 1 , 1 , 0 , 0 , 0 , 1]
(c) numpy.argmax returns the index (not value) of the maximum value of an input 1-D array
(when ties occur, it returns the first one)
1 u = np . array ([1 , -1 ,2 , -2])
2 idx = np . argmax ( u )
3 # idx is 2
Algorithm 4 k-nearest neighbor algorithm
Input: k = 7, training set Xtrain ∈ R
600×784 and labels ytrain ∈ R
600×1
, test set Xtest ∈ R
100×784 and
labels ytest ∈ R
100×1
.
Output: ypredict
1: ypredict = −1 ▷ all predicted labels initialized as −1; provided in the code template
2: for i = 0 : Ntest do ▷ iterate over all test images
3: x = Xtest[[i], :] ▷ x stores the current test image as a row vector
4: d = 0 ▷ d ∈ R
600×1
stores the distances of the current test image to all training images
5: for j = 0 : Ntrain do ▷ iterate over all training/dictionary images
6: d[j] = ∥x − Xtrain[[j], :]∥ ▷ distance between the test image and the j-th training image
7: end for
8: Obtain the indices of the bottom k values from d ▷ Try using np.argsort
9: Get the most frequent label of these k training images ▷ Use np.bincount and np.argmax
10: Save the predicted label of the test image in the corresponding index of ypredict
11: end for
11
4.4 (Optional, 3 Bonus Points) ℓ1 norm and vectorization The norm ∥v∥ =
p
⟨v, v⟩ we introduced in the lecture is not the only way to measure magnitudes of vectors, and hence ∥a − b∥ is
also not the only way to measure distance between vectors a, b. Another norm, the ℓ1 norm (also
known as Manhattan Distance) is calculated by
∥v∥1 =
Xn
i=1
|vi
| for v ∈ R
n
,
where |·| denotes the absolute value. This also leads naturally to ℓ1 distance between a, b: ∥a − b∥1
.
Please redo problem 4.3 with the distance in line 6 of the pseudo-code replaced by the ℓ1
distance and run the prediction and validation again. In order to receive full marks, please use
numpy.absolute and numpy.sum functions to write the function l1_norm. This is based on the idea
of vectorization—many scalar operations are broadcast componentwise and performed in parallel
on vectors and matrices, which is used to speed up the Python code without using loop. You can
check out this webpage https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/
VectorizedOperations.html or alike for more information.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫DTS101TC Introduction to Neural Networks Coursework
  • 下一篇:代寫CanvasList CS 251 Project 3
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美福利一区二区| 色网在线视频| 国产一区激情| 999精品视频| 综合激情一区| 亚洲国产导航| 日韩电影在线观看电影| 日本欧美加勒比视频| 亚洲精品日韩一| 天天av天天翘天天综合网色鬼国产| 黑人欧美xxxx| 日韩一区二区三区免费观看| 精品国产免费一区二区三区四区| juliaann成人作品在线看| 狠狠色狠狠色综合网| 国产v日韩v欧美v| 亚洲高清在线一区| 国产一区网站| 久久精品动漫| 2023国产精品自拍| 姬川优奈aav一区二区| 国产免费视频在线| av日韩亚洲| 国产伦理久久久久久妇女| 亚洲理论电影网| 激情六月婷婷久久| 中文字幕+乱码+中文字幕一区| 在线视频精品| 国产宾馆实践打屁股91| 久久精品欧美日韩| 一本到一区二区三区| 91麻豆福利| 污的网站在线观看| 91久久青草| 一个色综合网| 一区二区高清免费观看影视大全| 日韩一区二区三区免费观看| 九九精品调教| 亚洲丁香日韩| 日本不卡的三区四区五区| 在线亚洲一区观看| 午夜丝袜av电影| 伊人网在线播放| 日韩国产欧美一区二区| 国产乱码精品一品二品| 午夜成人在线视频| 欧美精品videossex少妇| 麻豆精品99| 另类小说一区二区三区| 一区二区成人在线| 日韩精品亚洲人成在线观看| 亚洲综合国产| 亚洲日本电影在线| 99热在线免费| 久久综合社区| 亚洲日本青草视频在线怡红院| 在线观看黄色av| 激情小说一区| 1024成人网| bt电影在线| 精品在线播放| 成人免费高清视频| 欧美精品丝袜中出| 成人看av片| 欧洲grand老妇人| 成人手机电影网| 国内福利写真片视频在线| 日日夜夜天天综合| 国产美女一区| 欧美成人精品二区三区99精品| 特级毛片在线| 麻豆精品一区二区三区| 日本亚洲天堂| 欧美激情亚洲| 亚洲一区二区欧美日韩| 在线观看国产麻豆| 久久精品国产亚洲blacked| 亚洲男人的天堂av| 国产精品久久久久一区二区国产| 99亚洲一区二区| 午夜欧美在线一二页| 欧洲不卡视频| 亚洲精品极品少妇16p| 在线观看www91| 日韩中文字幕一区二区高清99| 美女www一区二区| 夜色福利刺激| 网曝91综合精品门事件在线| 亚洲成人激情av| 亚洲欧美韩国| 国产精品福利在线播放| 九色国产在线观看| 日韩极品一区| 日韩一级二级三级| 亚洲情侣在线| 九色丨porny丨| 久久99偷拍| 日韩欧美国产网站| 久久成人av| 亚洲欧美日韩国产另类专区| 综合毛片免费视频| 亚洲美女精品一区| 欧美2区3区4区| 91福利国产精品| 免费成人结看片| 欧美成人精品高清在线播放| 亚洲视频综合| 精品视频一区二区三区免费| 久久久久久久| 国产一区二区免费看| 日本天堂在线观看| 99re6这里只有精品视频在线观看| 96久久久久久| 久久高清一区| 午夜在线视频播放| 成人av一区二区三区| 免费高潮视频95在线观看网站| 一区免费观看视频| 成人爽a毛片| 亚洲女女做受ⅹxx高潮| 亚洲国产天堂| 欧美日韩夫妻久久| 国产精品极品在线观看| 欧美日韩黄色影视| 欧美日韩午夜| 国产中文在线视频| 久久人人爽爽爽人久久久| 日本暖暖在线视频| 国产精品少妇自拍| 欧美美女黄色| 国产特级淫片免费看| 亚洲电影影音先锋| 夜色资源站国产www在线视频| 成人精品影视| 成人频在线观看| 粉嫩av一区二区三区在线播放| 免费在线稳定资源站| 亚洲综合好骚| av网址在线| 丰满白嫩尤物一区二区| 91tv亚洲精品香蕉国产一区| 99久久综合色| 9999在线精品视频| 国产精品拍天天在线| 综合伊人久久| 精品成人av一区| 91亚洲成人| 在线国产情侣| 亚洲免费av网站| 久久久久久久久国产一区| 91精品国产91久久综合桃花| 一区二区小说| 香蕉视频在线观看免费| 欧美激情综合五月色丁香| 偷拍自拍亚洲色图| 美女欧美视频在线观看免费 | 美女的尿口免费视频| 自由日本语亚洲人高潮| 999在线视频| 成人高清免费观看| 一区中文字幕| 一级毛片在线视频| 国产精品毛片高清在线完整版| 欧美猛男做受videos| 日本啊v在线| 亚洲一区二区三区精品在线| 韩日视频一区| 中文字幕成在线观看| 欧美变态凌虐bdsm| 91视频一区二区三区| 啪啪免费视频一区| 欧美写真视频网站| 99热精品久久| 手机在线免费看av| 7777精品伊人久久久大香线蕉完整版 | 精品不卡在线视频| 久久久精品欧美丰满| 日韩成人精品一区| 免费影视亚洲| 国产欧美精品国产国产专区| yiren22亚洲综合| 亚洲午夜免费福利视频| 女人抽搐喷水高潮国产精品| 视频一区二区三区在线看免费看| 国产成人免费在线视频| 在线日韩成人| 日本高清中文字幕在线| 欧美日韩精品欧美日韩精品| 国产成人av一区二区三区在线观看| 欧美一区 二区| 性爱视频在线播放| 成人免费乱码大片a毛片软件| 国产精品私人影院| 免费一级欧美片在线播放| 经典三级久久| 欧美va在线播放| www.欧美.com| 国产香蕉精品| 一二三四区在线观看| 欧美一区二区高清|